

Welcome to Orchd SDK’s documentation!

Welcome to the Orchd SDK documentation page. Here you will find all the necessary
information to develop your extensions to Orchd. The orchd-sdk CLI. will help
you with boilerplate code generation and project management making it easy to
extend orchd to your needs. To better understand how orchd and the orchd-sdk are
related, check the Orchd Architecture section of this documentation.

Contents:

	About Orchd SDK Project
	Orchd Architecture

	License

	Orchd SDK CLI Usage
	Installing Orchd-SDK

	Orchd Extension Project
	Creating a new Project

	Project Structure

	Creating Extensions - Reactions, Sensors and Sinks
	Creating a new Reaction

	Creating a new Sink

	Creating a new Sensor

	Testing your Project

	Building

	Deploying

	Creating Templates

	Source Code Reference
	Models

	Reaction Module

	Sensor Module

	Sink Module

	Errors Module

Indices and tables

	Index

	Module Index

	Search Page

About Orchd SDK Project

Orchd Architecture

Note

A more detailed view of the Orchd’s architecture can be found here: Orchd Documentation: Architecture [https://orchd.readthedocs.io]

The Orchd solution was architected to work as an integrator for Edge and IoT environments. Its two base premises
are: “standardization takes time”, “without standardization integration is necessary”. Orchd stands for
“Orchestration Daemon” its intention is to integrate and orchestrate services that barely or cannot communicate with
each other.

Orchd development is centered on its architecture, and invites developers to add its own extensions and set the
interaction between different systems. With this in mind, Orchd offers an SDK to support developers on the process
of extending Orchd.

In this documentation you will learn how to use the orchd-sdk CLI command to create your extensions.

License

The MIT License (MIT)
Copyright © 2022 <Mathias Santos de Brito>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Orchd SDK CLI Usage

The Orchd SDK CLI is a tool that make it easy extend the Orchd.
It generates boilerplate code for Sensors, Sinks and Reactions
so that you can start coding your Application Logic right away.

Contents

	Orchd SDK CLI Usage

	Installing Orchd-SDK

	Orchd Extension Project

	Creating a new Project

	Project Structure

	Creating Extensions - Reactions, Sensors and Sinks

	Creating a new Reaction

	Creating a new Sink

	Creating a new Sensor

	Testing your Project

	Building

	Deploying

	Creating Templates

Installing Orchd-SDK

The orchd-sdk CLI is installed when you install the orchd-sdk with pip. To install orchd-sdk just
run:

$ pip install orchd-sdk

Orchd Extension Project

A extension project in Orchd is a collection of custom sensors, reactions, sinks and communicators.
To build them you have to derive your own classes from the base classes offered by Orchd SDK,
they are:

	AbstractSensor

	AbstractReaction

	AbstractSink

After implementing them you have to pack them and distribute, e.g. via PyPi. To make this process
easier the Orchd SDK offers an CLI that can be invoked by using orchd-sdk in your shell after
you install Orchd SDK.

orchd-sdk command you allow you to create a project to hold your new Orchd Extensions, it will
generate the boilerplate code for your new Senors, Reactions and Sinks as well manage the build
and deployment of your code. The workflow is simple:

	Create a project with orchd-sdk new project

	Enter in project directory and review the files generated.

	Start creating your extensions with orchd-sdk new [sensor | reaction | sink]

	Create your tests (we encourage you to write testes)

	
	Add your code to the Sensor/Reaction/Sink module created.
	
	Inside the main package you will find the sensors, reactions and sinks subpackages where
the respective extension is added as a module (per sensor/reaction/sink). So, if you create
two sensors, there will be two modules inside the sensors subpackage, the same happens to
sinks and reactions.

	Run your tests and certify that everything works.

	
	Deploy to PyPi with orchd-sdk deploy
	
	The deploy command will allow you to try your package in the PyPi test server, we recommend
you to do so.

	Note that if you upload a version, you will not be able to override it, to deploy again you need
to provide a new version to your project. Also you can use build numbers in your project, so if
you upload more than one package with the same version but with different build tag, PyPi will
distribute the package with the highest build number, e.g. my_package-0.1-1 where the last 1 is
the build version.

	Now, in your Orchd environment you can install the packages and start using them right away without, even,
the need to restart the orchd daemon, just go adding the sensors and reactions to it by using the orchd
CLI.

Creating a new Project

Now that you understands what an orchd-sdk project is, let’s take a look on how to create one and how it is
structured. To create a new project type the following in your terminal:

$ orchd-sdk new project

It will ask you some questions and configure the project accordingly. You will have to provide the following information:

	The project name using kebab case (words separated by dash).

	The name of the author of the extensions.

	The initial version of the project.

	A description of the project.

If you prefer to pass these values in a non-iterative manner you can type orchd-sdk new project –help, the following
options are available:

$ orchd-sdk new project --help

 Usage: orchd-sdk new project [OPTIONS]

Create a new Project

Options:
 -n, --name TEXT Name of the project
 -ns, --namespace TEXT Project namespace
 -a, --author TEXT Project author
 -l, --license TEXT Project license
 -v, --version TEXT Version of the Project
 -d, --description TEXT Project description
 --help Show this message and exit.

Project Structure

After you create a project some files and folder will be created and the structure of your project will be the following:

├── README.md
├── VERSION
├── orchd.meta.json
├── requirements.txt
├── setup.cfg
├── setup.py
├── src
│ └── my_project_name
│ ├── __init__.py
│ ├── reactions
│ │ └── __init__.py
│ ├── sensors
│ │ └── __init__.py
│ └── sinks
│ └── __init__.py
└── tests
 ├── test_reactions.py
 ├── test_sensors.py
 └── test_sinks.py

	README.md, use this file to add basic documentation and infos about your project.

	VERSION, file holding the current version of your project

	orchd.meta.json, file holding metadata about the project, e.g. those you type when you create a new project.

	requirements.txt, python project file containing your python dependencies.

	setup.cfg and setup.py are the files with the information necessary to build your extension, you can always edit
them if necessary.

	src folder holds your project source folder

	src/my_project_name your project’s main source package.

	src/my_project_name/reactions subpackage holding reactions’ modules.

	src/my_project_name/sensors subpackage holding sensors’ modules.

	src/my_project_name/sinks subpackage holding sinks’ modules.

Creating Extensions - Reactions, Sensors and Sinks

After the initialization of your project, you can start creating extensions: reactions, sensors and sinks. You can use
for that purpose the subcommand new of orchd-sdk CLI followed by the kind of extension you want to create, the
available options are reaction, sensor and sink.

Warning

Always run the subcommand new of orchd-sdk in the root directory of your project.

Creating a new Reaction

Note

To know more about Orchd Reactions follow this link: Introduction to Orchd Reactions [http://example.xom]

To create a new reaction run:

$ orchd-sdk new reaction

You will need to answer some questions regarding your new reactions, they are:

	The reaction module name in snake case, e.g. container_start

	The reaction initial version, this is important because you my need to version your reactions.

	The list of events’ names that triggers this reaction in the form of a python list,
e.g. [“io.orchd.events.system.Test”, “com.example.events.SomeEvent2”]

	The handler parameters, they are default input attributes that are going to be available to the reaction,
it can be for example and endpoint to some service. It takes the form of a JSON string. These values can
be changed when deploying your reaction on orchd.

You can also provide the values with a non-interactive approach, to check the options just use –help, the options
are listed below:

Usage: orchd-sdk new reaction [OPTIONS]

 Creates a new Reaction

Options:
 -n, --name TEXT
 -v, --version TEXT
 -t, --triggers TEXT
 -hp, --handler_params TEXT
 -a, --active BOOLEAN
 --help Show this message and exit.

Let’s say that you created a new reaction called container_start, after you create it you can edit the
module source code that is placed in the folder src/my_project_name/reactions/container_start.py. The code will
look like the one below:

import json
import logging

import pydantic

from orchd_sdk.errors import ReactionError
from orchd_sdk.models import ReactionTemplate, Event
from orchd_sdk.reaction import Reaction, ReactionHandler

REACTION_NAME = 'com.mynamespace.ContainerStartReaction'

logger = logging.getLogger(__name__)

class ContainerStartReaction (Reaction):

 template = ReactionTemplate(
 name='com.mynamespace.ContainerStartReaction',
 version='0.1',
 triggered_on=["io.orchd.events.system.Test"],
 handler='my_custom_orchd.reactions.container_start.ContainerStartReactionHandler',
 handler_parameters={},
 sinks=[],
 active=True
)

 def __init__(self, reaction_template: ReactionTemplate):
 super.__init__(ContainerStartReaction.template)

class ContainerStartReactionHandler (ReactionHandler):

 def handle(self, event: Event, reaction: ReactionTemplate):
 """Implement here the logic of you reaction handler"""
 logger.info(f"com.mynamespace..ContainerStartReaction: Event {event.id} Captured and Handled...")

Note

You can edit the template class attribute as you wish, it will be used as a base to create templates for this reaction
when using orchd.

Now you have to implement your logic, orchd will execute the handle method of the ReactionHandler, the setup and
initialization of the reaction is done by orchd, in most of the cases you just need to implement the handle method.

The generated reaction works right away if you leave the default values, so you can deploy on orchd and test it, but
of course you want to add your own logic. This is very useful if you are in a development environment and you used the
pip install -e . command, that updates the source of your package as soon as you save it, all you need to try it with
orchd is to restart the daemon (ps. your package and the orchd daemon must be using the same python
environment/virtual environment).

Creating a new Sink

Note

To know more about Orchd Sensors follow this link: Introduction to Orchd Sinks [http://example.xom]

Sinks are elements associated to Reactions, it is used when you want to “deliver” the data to other system like a
database or a Rest API. You can associate as many sensors as you want to an reaction, an this is a very nice
architectural feature of orchd.

You may want to write your own sinks to deliver data to support systems, legacy systems, to the cloud, etc. To create a
new sink run the following command:

$ orchd-sdk new sink

	You will have to answer some questions, they are:
	
	The name of the sink in snake case (words separated by underscore _)

	The version of the sink, you may want to provide independent versioning to skins.

	Sink default parameters as a JSON string, these values can be changed when deploying the sink along with a
reaction.

You can also provide the values you answer in a non-interactive way, use –help to get the available options:

$ orchd-sdk new sink --help
Usage: orchd-sdk new sink [OPTIONS]

 Creates a new sensor

Options:
 -n, --name TEXT Name of the Sink module. (snake case)
 -v, --version TEXT Sink version
 -p, --parameters TEXT sink parameters
 --help Show this message and exit.

After you finish the process a new module with the name given will be created under your sinks subpackage of your
project. Suppose you create a sink called aws_s3, the module source file content will look like this:

import logging

from orchd_sdk.models import SinkTemplate
from orchd_sdk.sink import AbstractSink

logger = logging.getLogger()

class AwsS3Sink (AbstractSink):
 """Dummy Sink for testing purposes"""

 template = SinkTemplate(sink_class='my_custom_orchd.sinks.aws_s3.AwsS3Sink',
 name='com.mathiasbrito.aws_s3.AwsS3Sink',
 version='0.1',
 properties={})

 def __init__(self, template: SinkTemplate):
 super().__init__(template)

 async def sink(self, data):
 logger.info(f'{AwsS3Sink}: Data SUNK! Actually, I did Nothing! :P {data}')

 async def close(self):
 pass

Adjust the docstrings and implement your logic on async def sink(self, data) method. This codes is ready to be
deployed but obviously you will want to add your code. Also you can change the template class attribute this is used
as the basis to construct Sink Templates, where you can provide specific properties, for example the AWS S3 endpoint.

Creating a new Sensor

Note

To know more about Orchd Sensors follow this link: Introduction to Orchd Sensors [http://example.xom]

Sensors in Orchd are software entities responsible for capturing information and inject it on Orchd Reactor in the form
of an event. The reactor, based on the event, triggers the appropriate reactions. orchd-sdk offers a command to create
the sensor’s boilerplate code. The code is ready to be deployed, but obviously you want to customize the code.

To create a new Sensor run the following command:

$ orchd-sdk new sensor

The command will ask you some information about the new sensor being created, they are:

	The sensor module name in snake case.

	A sensor’s brief description.

	The sensor version, you may want to track versions in a different pace from your main package.

	Sensor’s default parameters to be used when starting a sensor instance. JSON format as string.

	The default sensing interval, how often the sensor must pull information from the environment.

Note

The sensing interval must be used if you are using an PULL strategy, let’s say you want to capture the temperature
from a physical sensor each 10 seconds. If you want to use a PUSH approach you may reduce this variable to 0, but be
sure that you use async/await to avoid blocking, which can interfere in the performance of your sensor and the system.

You can provide the values for the questions in a non-interactive way by providing the related parameters to the
command, they are:

Usage: orchd-sdk new sensor [OPTIONS]

 Creates a new sensor.

Options:
 -n, --name TEXT Sensor module name (use snake case)
 -d, --description TEXT Brief description for the new sensor.
 -v, --version TEXT Version number for the sensor. [default:
 0.0]
 -sp, --sensor-param TEXT Sensor Parameters as JSON
 -si, --sensing-interval INTEGER
 Sensing Interval in seconds (int) [default:
 1]
 -c, --communicator TEXT [default:
 orchd_sdk.sensor.LocalCommunicator]
 --help Show this message and exit.

As you can see, you can change the communicator, by default this version of orchd-sdk will automatically use the
LocalCommunicator, the only provided by Orchd right now, new types of communicators are constantly being develop
to provide different ways to communicate with the Orchd Reactor, for more information you may want to check the
Orchd Architecture [https://].

You will find the code for your new sensor in a new python module, with the name you provided, inside the sensors
folder of your project. Let’s say that I want to sense the event of a container being stopped, and I gave my sensor the
name container_stopped, the initial code would look like this:

import asyncio
import logging

from orchd_sdk.models import SensorTemplate, Event
from orchd_sdk.sensor import AbstractSensor, AbstractCommunicator, SensorState

logger = logging.getLogger(__name__)

class ContainerStoppedSensor (AbstractSensor):
 """
 Sensor that emits XYZ events.
 """
 template = SensorTemplate(
 name='com.mathiasbrito.ContainerStoppedSensor',
 description='This sensor listend to container stop events',
 version='0.1',
 sensor='my_custom_orchd.sensors.container_stopped.ContainerStoppedSensor',
 communicator='orchd_sdk.sensor.LocalCommunicator',
 parameters={},
 sensing_interval=1
)

 def __init__(self, sensor_template, communicator):
 super().__init__(sensor_template, communicator or 'orchd_sdk.sensor.LocalCommunicator')
 self.state = SensorState.READY

 async def sense(self):
 logger.info(f'{self.template.sensor}')
 await self.communicator.emit_event(
 Event(event_name='io.orchd.events.system.Test', data={'dummy': 'data'})
)

Warning

Note that the sense method is async and by using the LocalCommunicator you must ensure that your code is
asynchronous and you not block. Implement you sensing code asynchronous and wait for it inside sense.

After changing the sensor’s code, creating the tests, and making sure that your tests pass, your sensor must be ready to
be build and deployed.

Testing your Project

The Orchd Extension Project structure provides you with a tests directory with some files you can use to write tests
for your sensors, reactions and sinks. Orchd extension projects uses pytests and is pre-configured to run the tests.
Just give it a try and run:

$ orchd-sdk test

Other commands will invoke test before starting, this is the case for orchd-sdk build and orchd-sdk deploy.

Building

You can use orchd-sdk to invoke the python build process, it is a simple wrapper around setuptools. Since in the
future the orchd-sdk can require additional steps, it was decided to add a level of abstraction in the building
process so that we can accommodate future changes in the building process without compromising the user development
workflow.

To build your project package run:

$ orchd-sdk build

orchd-sdk will run the tests and if them pass it will build the packages, they will be created in the build
directory. If, for some reason, you want to skip the tests (BE CAREFUL) you can provide the –skip-tests command
as $ orchd-sdk build –skip-tests.

Deploying

You may want to deploy your new Orchd Extension to PyPi so that it can be easily installed with pip. To do so you can
use the deploy command, like this:

$ orchd-sdk deploy

By default the deploy command will run test and build commands for you and if everything goes well it will try to
deploy it to the PyPi Test Server.

Note

We decide to set orchd-sdk deploy behavior to not send the package to PyPi main server right away, to do so you
have to provide the –upload option. The main reason is to make sure that you will review your work before, one
more time before deploying.

If the tests and build runs ok, the command will start the deployment process to the PyPi test server, make sure to create
and account and provide the credentials when asked to (orchd-sdk uses twine to deploy your package). You can check the
result by visiting the PyPi test server, usually your project url will be https://test.pypi.org/project/my-project-name/.

If you fell comfortable with the results, do the final deployment by adding the –upload to the command, provide your
credentials and you are done with the first version of your Orchd Extension. After a successful deployment you can use
pip to install your extension and start deploying sensors, reactions and sinks using the orchd CLI, for mor information
see the Orchd Documentation [https://orchd.readthedocs.io].

Creating Templates

When you develop a new Sensor/Reaction/Sink you set a template class attribute, this attribute is used as a base to
create new custom templates for Sensors/Reaction/Sinks based on your class. Templates tells orchd how to setup and
deploy the new Sensor/Reaction/Sinks, one attribute that probably you want to change are the name, description and
parameters, for example, let’s say you developed a sensor that detects when a container is stopped, but you are
interested only in those events related to containers tagged with some value, you can implement your sensor in a way
that it will use the tag of interest from a parameter.

The idea behind the templates is that you can have multiple templates based on your custom Sensor/Reaction class so that
you can model different scenarios and different deployment environments. orchd-sdk provides you with a command to
generate a base template file out of a orchd extension class’ default template class attribute value.

Warning

To use orchd-sdk template to create a template file out of your class, make sure that your package containing the
class is installed.

Run the command:

$ orchd-sdk template --from my_package.sensors.MySensor

The command will print a JSON in your terminal containing the default values for your extension class, for example,
if we run the command for the orchd test DummySensor, we get the following:

$ orchd-sdk template --from orchd_sdk.sensor.DummySensor

{
 "id": "71fa0f62-22e0-4068-b5c6-ba9f46b739ac",
 "name": "io.orchd.sensor_template.DummySensor",
 "version": "1.0",
 "sensor": "orchd_sdk.sensor.DummySensor",
 "sensing_interval": 0.0,
 "communicator": "orchd_sdk.sensor.LocalCommunicator",
 "parameters": {
 "some": "data"
 },
 "description": "A dummy Sensor to be used for testing purposes"
}

You can redirect the output to a file and edit it. After that you can add this template to Orchd and start deploying
extensions based on these templates. To understand how to deploy sensors/reactions/sinks see the
orchd documentation [https://orchd.readthedocs.io].

Source Code Reference

Models

Reaction Module

Sensor Module

Sink Module

Errors Module

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Orchd SDK’s documentation!

 		
 About Orchd SDK Project

 		
 Orchd Architecture

 		
 License

 		
 Orchd SDK CLI Usage

 		
 Installing Orchd-SDK

 		
 Orchd Extension Project

 		
 Creating a new Project

 		
 Project Structure

 		
 Creating Extensions - Reactions, Sensors and Sinks

 		
 Creating a new Reaction

 		
 Creating a new Sink

 		
 Creating a new Sensor

 		
 Testing your Project

 		
 Building

 		
 Deploying

 		
 Creating Templates

 		
 Source Code Reference

 		
 Models

 		
 Reaction Module

 		
 Sensor Module

 		
 Sink Module

 		
 Errors Module

_static/plus.png

_static/file.png

_static/logo.png

_static/minus.png

